• About
  • Privacy Policy
  • Disclaimer
  • Contact
Soft Bliss Academy
No Result
View All Result
  • Home
  • Artificial Intelligence
  • Software Development
  • Machine Learning
  • Research & Academia
  • Startups
  • Home
  • Artificial Intelligence
  • Software Development
  • Machine Learning
  • Research & Academia
  • Startups
Soft Bliss Academy
No Result
View All Result
Home Artificial Intelligence

Start building with Gemini 2.5 Flash

softbliss by softbliss
April 17, 2025
in Artificial Intelligence
0
Start building with Gemini 2.5 Flash
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Today we are rolling out an early version of Gemini 2.5 Flash in preview through the Gemini API via Google AI Studio and Vertex AI. Building upon the popular foundation of 2.0 Flash, this new version delivers a major upgrade in reasoning capabilities, while still prioritizing speed and cost. Gemini 2.5 Flash is our first fully hybrid reasoning model, giving developers the ability to turn thinking on or off. The model also allows developers to set thinking budgets to find the right tradeoff between quality, cost, and latency. Even with thinking off, developers can maintain the fast speeds of 2.0 Flash, and improve performance.

Our Gemini 2.5 models are thinking models, capable of reasoning through their thoughts before responding. Instead of immediately generating an output, the model can perform a “thinking” process to better understand the prompt, break down complex tasks, and plan a response. On complex tasks that require multiple steps of reasoning (like solving math problems or analyzing research questions), the thinking process allows the model to arrive at more accurate and comprehensive answers. In fact, Gemini 2.5 Flash performs strongly on Hard Prompts in LMArena, second only to 2.5 Pro.

Comparison table showing price and performance metrics for LLMs

2.5 Flash has comparable metrics to other leading models for a fraction of the cost and size.

Our most cost-efficient thinking model

2.5 Flash continues to lead as the model with the best price-to-performance ratio.

Gemini 2.5 Flash price-to-performance comparison

Gemini 2.5 Flash adds another model to Google’s pareto frontier of cost to quality.*

Fine-grained controls to manage thinking

We know that different use cases have different tradeoffs in quality, cost, and latency. To give developers flexibility, we’ve enabled setting a thinking budget that offers fine-grained control over the maximum number of tokens a model can generate while thinking. A higher budget allows the model to reason further to improve quality. Importantly, though, the budget sets a cap on how much 2.5 Flash can think, but the model does not use the full budget if the prompt does not require it.

Plot graphs show improvements in reasoning quality as thinking budget increases

Improvements in reasoning quality as thinking budget increases.

The model is trained to know how long to think for a given prompt, and therefore automatically decides how much to think based on the perceived task complexity.

If you want to keep the lowest cost and latency while still improving performance over 2.0 Flash, set the thinking budget to 0. You can also choose to set a specific token budget for the thinking phase using a parameter in the API or the slider in Google AI Studio and in Vertex AI. The budget can range from 0 to 24576 tokens for 2.5 Flash.

The following prompts demonstrate how much reasoning may be used in the 2.5 Flash’s default mode.


Prompts requiring low reasoning:

Example 1: “Thank you” in Spanish

Example 2: How many provinces does Canada have?


Prompts requiring medium reasoning:

Example 1: You roll two dice. What’s the probability they add up to 7?

Example 2: My gym has pickup hours for basketball between 9-3pm on MWF and between 2-8pm on Tuesday and Saturday. If I work 9-6pm 5 days a week and want to play 5 hours of basketball on weekdays, create a schedule for me to make it all work.


Prompts requiring high reasoning:

Example 1: A cantilever beam of length L=3m has a rectangular cross-section (width b=0.1m, height h=0.2m) and is made of steel (E=200 GPa). It is subjected to a uniformly distributed load w=5 kN/m along its entire length and a point load P=10 kN at its free end. Calculate the maximum bending stress (σ_max).

Example 2: Write a function evaluate_cells(cells: Dict[str, str]) -> Dict[str, float] that computes the values of spreadsheet cells.

Each cell contains:

  • Or a formula like "=A1 + B1 * 2" using +, -, *,/ and other cells.

Requirements:

  • Resolve dependencies between cells.
  • Handle operator precedence (*/ before +-).
  • Detect cycles and raise ValueError("Cycle detected at ").
  • No eval(). Use only built-in libraries.

Start building with Gemini 2.5 Flash today

Gemini 2.5 Flash with thinking capabilities is now available in preview via the Gemini API in Google AI Studio and in Vertex AI, and in a dedicated dropdown in the Gemini app. We encourage you to experiment with the thinking_budget parameter and explore how controllable reasoning can help you solve more complex problems.

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
  model="gemini-2.5-flash-preview-04-17",
  contents="You roll two dice. What’s the probability they add up to 7?",
  config=genai.types.GenerateContentConfig(
    thinking_config=genai.types.ThinkingConfig(
      thinking_budget=1024
    )
  )
)

print(response.text)

Find detailed API references and thinking guides in our developer docs or get started with code examples from the Gemini Cookbook.

We will continue to improve Gemini 2.5 Flash, with more coming soon, before we make it generally available for full production use.

*Model pricing is sourced from Artificial Analysis & Company Documentation

Tags: BuildingFlashGeminiStart
Previous Post

A Field Guide to Rapidly Improving AI Products – O’Reilly

Next Post

How to Retrieve WiFi Password on Windows

softbliss

softbliss

Related Posts

Gemini 2.5’s native audio capabilities
Artificial Intelligence

Gemini 2.5’s native audio capabilities

by softbliss
June 5, 2025
AI stirs up the recipe for concrete in MIT study | MIT News
Artificial Intelligence

AI stirs up the recipe for concrete in MIT study | MIT News

by softbliss
June 5, 2025
Artificial Intelligence

Mistral AI Introduces Mistral Code: A Customizable AI Coding Assistant for Enterprise Workflows

by softbliss
June 4, 2025
Hierarchical Coordination in Multi-Agent Tasks
Artificial Intelligence

Hierarchical Coordination in Multi-Agent Tasks

by softbliss
June 4, 2025
NSFW AI Boyfriend Apps That Send Pictures
Artificial Intelligence

NSFW AI Boyfriend Apps That Send Pictures

by softbliss
June 4, 2025
Next Post

How to Retrieve WiFi Password on Windows

Premium Content

Enterprises Build LLMs for Indian Languages With NVIDIA AI

Enterprises Build LLMs for Indian Languages With NVIDIA AI

May 19, 2025
Genie 2: A large-scale foundation world model

Genie 2: A large-scale foundation world model

April 27, 2025
India AI Startups Spur Growth and Innovation With NVIDIA Tech

India AI Startups Spur Growth and Innovation With NVIDIA Tech

May 15, 2025

Browse by Category

  • Artificial Intelligence
  • Machine Learning
  • Research & Academia
  • Software Development
  • Startups

Browse by Tags

Amazon API App Artificial Blog Build Building Business Data Development Digital Framework Future Gemini Generative Google Guide Impact Intelligence Key Language Large Learning LLM LLMs Machine Microsoft MIT model Models News NVIDIA Official opinion OReilly Research Science Series Software Startup Startups students Tech Tools Video

Soft Bliss Academy

Welcome to SoftBliss Academy, your go-to source for the latest news, insights, and resources on Artificial Intelligence (AI), Software Development, Machine Learning, Startups, and Research & Academia. We are passionate about exploring the ever-evolving world of technology and providing valuable content for developers, AI enthusiasts, entrepreneurs, and anyone interested in the future of innovation.

Categories

  • Artificial Intelligence
  • Machine Learning
  • Research & Academia
  • Software Development
  • Startups

Recent Posts

  • Phishing attacks are evolving, but schools can fight back
  • Gemini 2.5’s native audio capabilities
  • Beyond Text Compression: Evaluating Tokenizers Across Scales

© 2025 https://softblissacademy.online/- All Rights Reserved

No Result
View All Result
  • Home
  • Artificial Intelligence
  • Software Development
  • Machine Learning
  • Research & Academia
  • Startups

© 2025 https://softblissacademy.online/- All Rights Reserved

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?